
Corresponding author:
KimKW1@cardi!.ac.uk

K.W. Kim, A. Duman, and E. Spezi, ‘RGU-Net: Computationally E!icient U-Net 
for Automated Brain Extraction of mpMRI with Presence of Glioblastoma’, 
Proceedings of the Cardi! University School of Engineering Research 
Conference 2024, Cardi!, UK, 2024, pp. 28-32. 

doi.org/10.18573/conf3.h

Keywords: 
Brain extraction, skull stripping, 
U-Net, lightweight, deep learning, 
magnetic resonance imaging.

Brain extraction refers to the process of removing non-brain tissues in brain 
scans and is one of the initial pre-processing procedures in neuroimage 
analysis. Since errors produced during this process can be challenging to 
amend in subsequent analyses, accurate brain extraction is crucial. Most 
deep learning-based brain extraction models are optimised on performance, 
leading to computationally expensive models. Such models may be ideal 
for research; however, they are not ideal in a clinical setting. In this work, 
we propose a new computationally e!icient 2D brain extraction model, 
named RGU-Net. RGU-Net incorporates Ghost modules and residual paths 
to accurately extract features and reduce computational cost. Our results 
show that RGU-Net has 98.26% fewer parameters compared to the original 
U-Net model, whilst yielding state-of-the-art performance of 97.97 ± 0.84% 
Dice similarity coe!icient. Faster run time was also observed in CPUs which 
illustrates the model’s practicality in real-world applications.
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INTRODUCTION

Brain extraction, also known as brain segmentation or skull 
stripping, is one of the initial pre-processing stages for 
neuroimage analysis and refers to the process of separating 
brain and non-brain (e.g. eyes, neck, skull) tissues in 
Magnetic Resonance Imaging (MRI) scans through medical 
image segmentation [1, 2]. The quality of brain extraction 
has a significant impact on subsequent analysis as errors 
produced during this process will be present in further 
stages of the analysis. To this day, manual segmentation 
is still considered the “gold standard”, however, such 
a method is prone to introducing inter and intra-rater 
variability between radiologists and the process is extremely 
time-consuming [3].

In recent years, there has been an increase in the demand 
for neuroimage analysis and the size of datasets, resulting 
in the di!iculty of performing manual segmentation. To 
tackle this problem, several deep learning models have 
been developed [4 - 9], as the implementation of the 
deep learning approach allows the decrease of the cost 
associated with the radiologist and the time taken to 
produce the segmentation. However, most studies to date 
focused on increasing the performance, o"en resulting in 
computationally ine!icient models which are not ideal for 
deployment in a clinical setting. 

To address this problem, we developed a computationally 
e!icient 2D brain extraction model which has similar 
performance as the original U-Net [10] but requires 
significantly less computational power. The proposed 
model, Residual Ghost U-Net (RGU-Net), integrates Ghost 
modules and residual paths to enhance feature extraction 
whilst decreasing the number of trainable parameters to 
achieve computational e!iciency. Our objective is not to 
claim the proposed model’s optimality for the task or to 
compare the model to existing brain extraction algorithms, 
but instead focus on potential lightweight architecture to 
increase the practicality of deep learning-based approaches 
in clinical settings.

MATERIALS AND METHODS

Dataset: UPenn-GBM
The proposed model was developed and validated using 
the publicly available dataset, UPenn-GBM1. The UPenn-
GBM dataset contains multi-parametric MRI (mpMRI) scans 
of 630 patients diagnosed with glioblastoma and a brain 
segmentation produced using a deep learning model [11]. 
The dataset includes 611 MRI scans prior to initial surgery 
and 60 follow-up scans for the second resection surgery. For 
this study, four structural MRI scans were used: T1-weighted 
(T1; n=671), gadolinium-based agent-enhanced T1 (T1Gd; 
n=671), T2-weighted (T2; n=671), and Fluid Attenuated 
Inversion Recovery (FLAIR; n=671) scans. The dataset was 
split into training (n=1612), validation (n=536), and testing 
(n=536) datasets.

Data Pre-processing and Augmentation
To develop a computationally e!icient model, a 2D 
segmentation approach was proposed as 3D convolutional 
layers are computationally expensive to operate. Due to this, 
the MRI scans were converted from NIfTI imaging format to 
a series of 2D JPEG images.

Additionally, data augmentation and transformation 
techniques were applied to increase the variety of the 

1 doi.org/10.7937/TCIA.709X-DN49

training and validation data. Five transformations were 
applied to the original scans: horizontal flip, vertical flip, 
rotation, random brightness, and elastic transformation. 
Each transformation had a 50% chance of being applied, 
allowing random combinations of transformations, creating 
a unique dataset with a wide variety of data.

Network Architecture and Implementation
RGU-Net (Fig. 1) is a modification of the U-Net architecture 
[10] optimised for automated brain extraction, with a focus 
on decreasing computational cost through the incorporation 
of Ghost modules and residual paths. Ghost modules, which 
were first proposed by Han et al. [12], were implemented 
to produce feature maps at a lower computational 
cost compared to the conventional convolutional layer 
approach. In addition to this, residual paths [13] were also 
integrated into the architecture to allow the deeper layers 
of the model to capture appropriate features during the 
training. 

Fig. 1. Overview of RGU-Net architecture.

The ablation study showed that the combination of 
Ghost modules and residual paths alone reduces the 
performance of the model. Therefore, asymmetrical 
encoder-decoder architecture was introduced to further 
enhance the performance. The decoder block incorporates 
two additional depthwise convolutional layers followed by 
Leaky ReLU ($=0.01). This approach further reduces noise 
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and increases performance, by reconstructing accurate 
segmentation masks of the brain. The combination of 
Ghost modules, residual paths, and asymmetrical encoder-
decoder has shown success in producing accurate predicted 
masks and requires significantly fewer trainable parameters.

RGU-Net was implemented using the PyTorch framework 
[14]. During the training process, a Dice loss function was 
implemented to monitor the performance of the model. The 
Dice loss function ranges from 0 to 1, where 0 means the 
predicted mask (PM) is identical to the ground truth (GT). 
The loss function is expressed as:

 (1)

Furthermore, to prevent overfitting of the model, a 
validation loop was implemented a"er every training 
epoch, and the model parameters were saved when the 
validation loss improved. The model was trained with the 
Adam optimiser algorithm [15] with an initial learning 
rate of 0.0001. If the validation loss does not improve 
for three epochs, the learning rate decays by a factor of 
0.1. The decaying learning rate aids the model to learn 
complex patterns and increases the performance [16]. 
Lastly, to decrease training time, an early stopper function 
was implemented to stop the training when the model 
converges.

Post-processing
3D segmentation was produced through the concatenation 
of a series of 2D PMs. Thresholding and a post-processing 
technique introduced by Lucena et al. [4] were applied to 
the concatenated 3D masks. This allowed the reduction 
of floating segments and noise, producing a clean brain 
segmentation mask.

RESULTS

The proposed model was evaluated using the Dice similarity 
coe!icient (DSC), which compares the similarity between 
the PM and the GT [17]. The DSC can be calculated as 
follows:

  (2)

Additionally, the number of model parameters were 
calculated using the model summary function from PyTorch.

Figure 2 shows the segmentation results in mpMRI scans of 
three random slices from each MRI sequence to illustrate the 
general segmentation generated by RGU-Net. The red arrow 
indicates areas of over/under-segmentation of the brain.

Fig. 2. The segmentation results of RGU-Net in di!erent MRI sequences. 
Red arrows indicate regions of over/under-segmentation.

Ablation study
The ablation study was conducted to investigate the e!ect 
of encoder and decoder blocks using a baseline model and 
two additional variations of RGU-Net: U-Net (baseline), 
RGU-Net without residual paths, RGU-Net without 
asymmetrical encoder-decoder, and RGU-Net. All models 
were implemented as specified and hyper-parameters 
were kept constant. Table 1 shows the comparison of 
model performances. Furthermore, the average run time 
to produce a 3D segmentation on a CPU device (Intel Core 
i7-1165G7) was measured and showed that the proposed 
RGU-Net is 80 seconds faster than the U-Net model.

Model No. 
Param

Run time 
(s)

DSC (%)
T1 T1Gd T2 FLAIR

U-Net (baseline) 31.03M 113 98.10.9 98.01.0 97.80.9 97.61.0

RGU-Net w/o residual paths 0.56M 19 97.71.0 97.51.1 97.40.9 97.11.1

RGU-Net w/o asymmetrical encoder-
decoder 0.65M 24 97.61.0 97.51.1 97.31.0 97.11.4

RGU-Net 0.54M 33 98.00.8 97.81.0 97.70.9 97.51.1

Table 1. Performance comparison for ablation study.
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DISCUSSION

RGU-Net demonstrated state-of-the-art performance in 
automated brain extraction, whilst maintaining significantly 
less trainable parameters, as shown in Table 1. Despite 
slightly lower performance compared to the U-Net, all 
di!erences are considered to be clinically insignificant 
since segmentations produced by trained radiologists have 
greater variance between segmentation masks [18]. 

All models in the ablation study exhibited the highest 
performance on T1 scans, followed by T1Gd, T2, and 
FLAIR scans, suggesting sensitivity to the di!erent 
contrast settings of MRI scans. This could be mitigated by 
introducing contrast transformation to the training data 
during data augmentation. While RGU-Net demonstrates 
high performance. In some MRI slices, signs of over/under-
segmentation were observed (Fig. 2), suggesting further 
optimisation of the model is needed. The use of a single 
dataset during the development of the model reduced 
the variety of image acquisition within the training data. 
Leading to poorer performance when MRI scans with 
di!erent imaging parameters are inputted. To address 
this, an increase in the number of datasets and input from 
radiology consultants is highly recommended.

Furthermore, to increase the accuracy of the model whilst 
decreasing the number of parameters, an asymmetrical 
encoder-decoder architecture was introduced. However, 
the method increased the number of operations, and Table 
1 suggests a correlation between the model complexity and 
the run time of the model. Therefore, further investigation 
on the model’s complexity and run time is required to 
further optimise the model to improve computational 
e!iciency. Additionally, to decrease computational cost 
of the model, 2D convolutional layers were implemented, 
limiting the model’s ability to capture 3D contextual and 
spatial information. Although the high DSC implies that 
this loss is not significant, it is worth exploring a potential 
implementation of the 3D convolutional layer for optimised 
performance.

One of the major strengths of RGU-Net is the computational 
e!iciency of the model, achieved through the 
implementation of Ghost modules and residual paths 
which make the model ready for in real-world applications 
in environments where access to powerful computing 
devices is not warranted. This is crucial for the integration 
of automated brain extraction tools into clinical workflow, 
as the run time of the model will accumulate when inputted 
with a large dataset.

CONCLUSION

Overall, RGU-Net showed promising results for automated 
brain extraction. Its high performance, computational 
e!iciency and compatibility with CPUs make the model 
a valuable tool for neuroimage analysis. Further research 
and optimisation of the model could further enhance the 
reliability, performance and computational e!iciency of the 
model.
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