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Leveraging AI for Asset and Inventory 
Optimisation

Sid Shakya, Anne Liret and Gilbert Owusu

Introduction

Service organisations are typified by resources, both human and non-human. 
Human resources comprise the front and back office staff, and non-human 
resources include spares, network assets etc. Managing resources to meet cus-
tomer demands is one of the key challenges in any large service organisations. 
It is well recognised that the proactive management of resources is one of the 
key contributors to the performance and profitability of service organisations 
(Shakya et al. 2013). Proactive resource management provides the framework 
to optimise the cost and quality of the products and services an organisation 
offers. It is one of many challenges that service organisations are faced with 
on a regular basis. There are, for example, specific challenges to be tackled in 
resource management, such as making decisions on many different types of 
resources that a company should maintain, and, more importantly, on manag-
ing the ways these different resources interact together to create products and 
service (Owusu & O’Brien 2013; Shakya et al. 2017).

A case in point is that fixing broadband at a customer’s premises may involve 
a field technician, a vehicle, spare parts, a call centre operator and the network. 
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These are all classified as resources. Each of these resources can have different 
capabilities (i.e. functions), capacity and/or a geographical requirement. For 
example, a specific field engineer may have broadband installation skills and 
plumbing skills, whereas another field engineer may have cable and fibre joint-
ing skills. Similarly, a vehicle type could be a van with light equipment or it 
could be a truck that is able to carry large heavy equipment. This also applies 
to spare parts, call centre operators, or network services with various capa-
bilities and different specifications, which may lead to many possible variations 
of service offerings. Managing these diverse resources to support the efficient 
delivery of products and services is a crucial and challenging problem.

In recent years, there has been a strong drive to leverage best practice in the 
supply chain management domain to service operations (Voudouris 2008). 
Recent research has shown that this increasingly involves the automation of 
planning processes (Owusu et al. 2013). The key objective of planning is to 
have the right resource available at the right time in the right place to fulfil 
customer demand. Advanced planning of resources helps firms to maximise 
utilisation and minimise waste, and by doing so it also helps firms to fulfil cus-
tomer demands and maximise revenue, while minimising cost. One of the key 
prerequisites for successful planning is the optimal deployment of strategic 
resources to enable a frictionless delivery service.

In this chapter we deal with assets and inventories, one of the key resources 
that service organisations such as telecommunications and utility companies 
maintain. There are two dimensions – strategic and operational – to the deploy-
ment challenge. The strategic dimension focuses on deploying fixed assets to 
ensure that the organisation is set up for optimal performance. The operational 
dimension focuses on replenishing inventories (spares) for efficient delivery of 
services in alignment with service level agreements with customers (SLA). As 
with any other resource types, the timely availability of spare parts can have a 
positive impact on service quality. Therefore, it is very important to have the 
right spares in the right place and at the right time. Spare parts are normally 
kept in warehouses or distribution centres. It is therefore very important that 
the warehouses are also built in the right places, where they can provide the 
maximum value to the organisation while minimising the travel time and  
maximising the distribution coverage. This is a combinatorial optimisation 
problem. Real-world combinatorial optimisation problems involve a heteroge-
neous set of side constraints (i.e. rules). Modelling and maintaining such rules 
or constraints is non-trivial for complex problems. Operational requirements 
such as reuse and model configurability make AI (in particular heuristic search 
methods) a prime candidate for solving combinatorial optimisation problems 
for operational use.

The remainder of the chapter is structured as follows. The next section 
focuses on using AI to model and solve the challenge of strategically deploying 
assets. In the subsequent section, we focus on the replenishment of spares. We 
provide use cases to give insight into how we operationalised these models.
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Strategic Deployment of Assets – the IoT  
and Inventory Management

Recent advancement in the IoT (internet of things) and connected technologies 
have had an impact on how warehouses are built and managed. Increasingly,  
warehouses are getting smaller and mobile in their nature, shifting from fixed 
structures, such as brick-and-mortar buildings, to mobile containers or even 
lockers. They are remotely monitored and operated, and the right to access is 
normally given on demand, accessible with a programmed device or unique 
passcode that is generated per visit. A fixed number of personnel (typically 
engineers and technicians) are assigned to these mobile warehouses based on 
their home locations and working locations, such that the distances they need 
to travel to get spares and get to the clients or repair sites are minimised. These 
mobile warehouses can be quickly deployed to different locations in a very 
short time. More importantly, they can be moved from one location to another 
and can be redeployed and reused, if required.

A typical case of redeployment in a telecom scenario would be that the demand 
for service at a certain location need to be shifted to another location because of 
the completion of a new housing project, which leads to the completion of the 
telecom infrastructure deployment in that area. In such a case, the mobile stor-
age facilities near to the area can be relocated to a new area where a new project 
has started. Another example would be a situation where fewer repair jobs are 
required in certain areas and therefore spare parts are not required as frequently 
as in the past. This may be due to a change in technology or an upgrade to the tel-
ecom infrastructure. In such cases, the mobile warehouses can be moved to areas 
where they could be better utilised. Furthermore, in some cases, mobile ware-
houses are used by several lines of business (LoBs) simultaneously, both within 
the same organisation or contracted to an external organisation. There could be 
a complex SLA (service level agreement) with specifications such as who can 
use the mobile warehouses and how/when they can be used, typically operated 
through a booking system. A case for redeployment happens when a new LoB or 
new organisation is added in the service chain to use the mobile warehouses. In 
many cases, a new set of mobile warehouses would require a fresh deployment. 
This also occurs when an organisation leaves the service chain.

The location where these mobile warehouses can be deployed can also have 
constraints, such as the availability of a fenced perimeter, accessible by a large 
vehicle delivering spare parts, and a requirement for electricity. Therefore, 
certain locations are pre-determined as suitable hosting sites. The task then 
becomes finding the best location out of the suitable locations set to deploy or 
redeploy the mobile warehouses.

The problem is trivial if fewer mobile warehouses are involved with a small 
number of users and sites. The deployment decision could be made manually and 
accurately. However, this is not the case with most large service organisations.  
They can have hundreds of such mobile warehouses serving thousands of  
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engineers with thousands of possible deployment locations to choose from. In 
such scenarios, a manual design of the deployment locations of mobile ware-
houses can be prohibitively time-consuming. More importantly, the design can 
be sub-optimal in terms of the distribution coverage and travel time required 
by engineers to acquire the spare parts.

A Use Case at BT

BT operates a large network infrastructure in the UK. It has over 22,000 field 
engineers maintaining over 5,000 exchanges, serving millions of customers and 
supporting many products and services. It uses a huge inventory and thousands 
of spare parts per day to repair or upgrade the network equipment, both at 
customer premises and at exchange buildings. The technicians travel to ware-
houses each morning to source the spare parts that they require to perform 
the tasks assigned to them for that day. Some parts could be specific to a task; 
others could be general spares such as cables and sockets. Keeping the correct 
number of spare parts in each warehouse is crucial for field operations. Fur-
thermore, specialised spare parts sourced for a specific task should be delivered 
to the warehouse in a timely manner to complete the task in time and not to 
miss other impending appointments.

BT operates over 90 fixed warehouses and distribution centres across the UK 
where engineers can collect spare parts that they have ordered. Engineers travel 
routinely, sometimes more than once a day, to get the parts that they require. 
Fixed warehouse locations can cause some issues such as long travel times, par-
ticularly when the home location of the engineer is far from the warehouse, 
and more often when the site where the task has to be done is also far from the 
warehouse. In addition, those sites currently serve tasks at over 5,000 exchanges 
across the country. To increase efficiency, BT wants to increase the number of 
warehouses operational in the country from 90 to over 700 to minimise travel. 
Furthermore, those new warehouses will be mobile, capable of being quickly 
deployed and redeployed as and when needed. The new mobile warehouses 
would keep a set of small storage spaces, or lockers. Each of the lockers can 
keep parts required by a specific technician. Spare parts would be delivered to 
the locker as per the booking made, sometimes couriered for a rapid delivery. A 
technician would get fixed or one-time credentials to access the locker.

The lockers would be hosted at BT’s exchange sites, which are capable of han-
dling large delivery trucks, and with a fenced perimeter. However, finding the 
best 700 exchanges out of 5,000 possible exchanges to host the mobile ware-
houses is a difficult task, especially when they have to be redeployed every few 
months. Warehouses have to be deployed in such a way that:

1.	The cumulative expected travel time for all technicians across the country 
is minimised.

2.	The differences in distance from a warehouse to the served exchange sites 
should be minimal, to avoid long travel times to certain sites.
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3.	The differences in distance from a warehouse to the home locations of 
the assigned technicians should be minimised, to avoid cases where 
some technicians travel very short distances while others travel long  
distances.

4.	The differences in the number of the tasks that warehouses are expected  
to serve per day should be minimal. This is to avoid a situation where  
some warehouses are extremely busy serving many tasks compared with 
other warehouses.

5.	The differences in the numbers of technicians that the warehouses serve 
should be minimal. This is for the same reason for the case above.

Warehouse Deployment as an Optimisation Problem

Organisations are increasingly looking to AI techniques to solve large-scale 
industrial problems. They have been proven to provide good solutions for many 
real-world problems. Latest advancements in machine learning and deep data 
mining, and their successful application in some cutting-edge inventions such 
as self-driving cars, drones and augmented and virtual realities, has further 
highlighted the effectiveness of AI techniques, with organisations increasingly 
moving to adopt such techniques in their decision-making process.

The five conditions mentioned in the previous section can be considered the 
objectives of the warehouse deployment problem and the problem itself can  
be modelled as a combinatorial optimisation problem, where the goal is to find the  
700 best locations out of 5,000 possible locations that satisfy the above objectives.

A manual approach to solving the same problem would involve a set of heu-
ristics to find the 700 initial sites, evaluating them and manually exchanging 
sites to see if there is any improvement on the objectives. However, this would 
be very time-consuming, given the combinatorial nature of the problem. This 
is where AI techniques can be useful.

In the following sections it is briefly shown how the problem is modelled 
as an optimisation problem and how AI techniques are being used to solve  
this problem.

AI Approach to Solving the Problem

A simple greedy logic (GL) heuristic for solving the problem would be to 
choose n sites with a large number of tasks as the initial warehouse locations. 
Then create n cluster of sites by assigning all the remaining sites to the ware-
house sites based on nearest distance. Evaluate the warehouse sites by calcu-
lating values for each of the five objectives and adding them together to get a 
weighted combined objective value. This objective value is sometimes known 
as solution fitness value. Then iteratively move to better deployment by chang-
ing a warehouse location to a neighbouring site one by one and accepting the 
new deployment if the combined objective is better.
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The core idea of the heuristic here is that choosing the sites with large num-
bers of tasks as the initial warehouse location is likely to minimise the travel 
time. The motivation here is that the tasks for those initial warehouses will 
not require any travel. This, however, could conflict with other objectives. For 
example, minimising the travel time may not minimise the differences among 
the travel distances between sites. It may be that some sites require long travel 
times while others may require very short travel times, even though cumulative 
travel time may be minimal, resulting in the preference being given to one set 
of sites at the expense of others. In the optimisation literature, this type of solu-
tion is termed the local optimal solution.

A more sophisticated approach would be to use advanced search heuristics 
such as a genetic algorithm (GA) to optimise the warehouse allocation prob-
lem. GAs are a class of population-based evolutionary algorithms (Goldberg 
1989) that find solutions for problems using the concept of natural selection 
and recombination to evolve a better solution (Larrañaga & Lozano 2002; 
Shakya & Santana 2012). One of the core strengths of GAs is the way they rep-
resent solutions (Goldberg 1989).

The obvious approach for this problem is to represent each deployment x = 
{x1, x2, … xn} as a GA solution, where each xi, which is the chosen exchange for 
deployment of warehouse I, is considered as a solution variable.

The next component of a GA is defined as the fitness, f(x), of a given solution 
x, representing the quality of the solution. In this case, the combined objective 
value of five objectives for a solution x is used as the fitness value for solu-
tion x. The objective for the GA is then to find the best values for solution x 
such that fitness f(x) is minimised. This optimisation task can be expressed as  
below (eq. 1):

            min        f(x) = αTrv(x) + β∆Tsk(x) + γ∆Tch(x)� (1)
x = {x1, x2,…xn}   

Here, Trv(x) represents the first three objectives, related to travel. represents 
objective 4, related to difference in task, and ∆Tch(x) represents objective 5, 
related to difference in served technicians. Given a solution x, it is trivial to 
calculate values for each of these three terminologies. The parameters α, β and 
γ are the weights applied to the respective terms. This provides explicit control 
over which of the objectives to be prioritised as per the requirements of the 
design in different scenarios.

Unlike traditional methods, where an algorithm works directly with the prob-
lem definition, GAs try to evolve the solution by working with the population of 
solutions as a whole and selecting the better solution while letting worse solutions 
die off over multiple generations, so as to increase the density of good solutions in  
the population and recombining them to create even better solutions.

The difference between GAs and the greedy logic (GL) is that GL works with 
a single solution and tries to find the best locations by assuming that assign-
ing the sites with high volumes of tasks as warehouses are likely to minimise 
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the travel time, thus not properly considering other objectives. In contrast, 
GAs continue to evolve to find the best locations that balance all the objectives 
against one another and explore a wider part of the search space by working 
with multiple solutions at once.

Business Impact

The AI logic described in the previous section was incorporated into a tool 
called Intuitu strategic planner (Figures 3.1 and 3.2), which is being used by 
BT to plan the mobile warehouse deployment. In Figure 3.2, each central node 

Figure 3.1: Intuitu Strategic Planner tool.

Figure 3.2: A design by Intuitu for 600 locations.



46  Digital Supply Chain Transformation

represents a proposed warehouse location and each edge pointing to the cen-
tral node represents a site that is served by the central node. Our approach has 
made noticeable improvements for the business in terms of the cost savings due 
to reduced deployment time and reduced travel time for technicians to source 
spare parts and to perform tasks assigned to them with increased SLAs.

The combined value of the benefits by the project over a five-year period is 
estimated to be millions of pounds in cost savings due to a reduction in deploy-
ment travel time for technicians. Other benefits include improving the quality 
of the decision-making process by enabling what-if scenario modelling.

A Use Case of Operational Replenishment of Inventories  
and Assets

In the previous section we saw a use case of the strategic dimension to inven-
tory and asset management, which focused on the strategic deployment of 
warehouses to ensure that the organisation is set up for optimal performance. 
In this section we present a second use case. The focus is on the operational 
aspect of inventory management. As mentioned before, the operational dimen-
sion to inventory management is about replenishing inventories (spares) for 
the efficient delivery of services in alignment with the agreed service level 
agreed with customers (SLA).

A typical operational journey starts with a demand linked to a fault at a client 
site impacting one or multiple parts (pieces of asset). This demand is associated 
with a service assurance that constrains the faulty part to being repaired within 
a pre-agreed time, which could vary from two weeks down to less than one day. 
Once the fault is identified and the availability of the relevant spare part has 
been confirmed, a job is created and assigned to a field technician for further 
survey and fixing operation. When a part is picked up by the engineer out of 
a warehouse stock, there is an update process over the supply chain, to ensure 
any future task allocation decision takes into account the remaining volume of 
accurate spares. Figure 3.3 outlines the typical flow of operations in an organi-
sation responsible for asset-constrained service of maintenance.

It is well recognised that it is possible to apply AI reasoning to recommend 
a proactive decision for the transfer of spares to the warehouses according to 
configurable asset management policies, while optimising the overall cost such 
as storage of asset and shipping taxes (Desport et al. 2016). The use case here 
was to build a plan of asset transfer between warehouses over a given number 
of days and compare the plan against different asset replenishment policies and 
demand profile. Such decisions are typically made to address the asset replen-
ishment problem. When the same asset is common across the business or can 
be used to serve different clients, the asset management includes:

1.	an estimate of how many and where/for which client the asset will need to 
be replaced;
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2.	an evaluation of the optimum volume of spare stock of such pooled assets 
that allows the customer needs to be served under the agreed commitments;

3.	what policy for the replenishment of those assets is recommended accord-
ing to the criticality of customer contract or the asset cost.

In the telecommunications, facilities and energy sectors, maintenance service 
providers have to address the large-scale real-world variants of asset manage-
ment across multiple customers and over a distribution network of widespread 
stock warehouses and repair centres. A typical distribution network in e-logistics  
is composed of a repairer or supplier node, a main national centre, regional 
centres dependent on the national centre, and a set of local centres dependent 
on the regional centres. The topology of the network defines the allowance and 
cost of asset transfer between two nodes of the network (i.e. two centres). When 
a new or repaired asset comes into the chain, the process moves it from supplier 
node down to one of the suitable centres. When a faulty asset is returned to the 
repair centre, the process moves it from local centres to the repairer.

A Typical Use Case

As a case in point, a maintenance agreement of premium service assurance can 
require a full fix within four to eight hours, which means all the following steps 
have to be completed within that time range:

1.	assigning a field technician,
2.	collecting the spare part at the warehouse,

Figure 3.3: AI-supported asset-constrained service flow.
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3.	travelling to the client site, and
4.	replacing the faulty part.

It is well known that the field force scheduling aspect of the problem only can be 
operationally automated and enhanced using a vehicle routing problem model 
and heuristic search solution approach (Liret 2008). Nevertheless, the prob-
lem variant with asset collection at warehouse and completion in very short 
response time requirement is a challenge to performing optimally. As a matter 
of fact, field engineers could not have time to collect spares, travel and perform 
the job unless a spare is present in the nearest warehouse. More precisely, to 
solve this problem, a proactive planning solution is needed to plan a minimum 
number of spares ahead so that, operationally, there is sufficient relevant spares 
in place at the nearest warehouse to the client site. The volume of spares to 
plan is inherently a function of an acceptable business risk, usually estimated 
by services assurance management teams and supply chain operations teams.

There is thus a proactive replenishment planning problem to solve in order to 
transfer the right amount of the right spare asset in alignment with the service 
assurance. To solve that problem in a sustainable manner, one needs a hybrid 
approach towards the asset movement planning in order to optimally meet the 
service assurance across as many client sites as possible, while recommending 
the risk of shortages for the warehouse and service contracts. When a fault pro-
file is predicted (based on client, asset features and geography), the approach 
would extend to targeting any required replenishment action (asset transfer) 
ahead of the fault estimated date. The assumption in this section is that assets 
can be used across multiple clients and countries. Thus, the question is how to 
optimise the storage of these assets for seamless reuse.

Whereas the strategic aspect of mobile warehouse deployment supports the 
right positioning of warehouse of assets for service assurance, the operational 
aspect of asset transfer plans supports the decisions over which product and 
which spare volume should be replenished (i.e. transferred) at which ware-
house (mobile or fixed). In both cases, IoT technologies are key enablers of a 
zero-touch approach across the service chain.

Asset Move for Automated Replenishment Supported by the IoT

As mentioned in previous use case, the IoT is changing the way businesses 
maintain equipment, write service agreements and set customer expectations 
in the process – i.e. exploring a new approach to maintenance that is driven by 
insights, instead of errors. Today, most companies offer scheduled maintenance 
as part of an equipment service contract. The IoT now enables a shift from just 
consuming data from connected devices to gaining visibility into the current 
state of equipment and using that information to deliver a different type of field 
service while operating the inventory and asset network in a more proactive 



Leveraging AI for Asset and Inventory Optimisation  49

manner. We can now use data from sensors that indicate an asset’s health to act 
based on the probability of a fault occurrence. It has been suggested that the 
IoT will shortly enable businesses to shift from recurring preventative mainte-
nance plans to the proactive monitoring of devices and predictive maintenance  
(Pintov & Brandeleer 2019). Indeed, IoT platforms can host artificial intelli-
gence (AI) components that monitor trends and predict which installed asset is 
likely to fail. AI and data science provide the ability to process massive amounts 
of information (given the right dataset), which help to inform the need for 
increasing the volume of spares in particular warehouse at certain date.

This kind of reasoning will reduce the likelihood of maintenance delays 
while improving customer satisfaction. This approach, however, poses a num-
ber of challenges. For client service assurance management, we want to ensure 
the SLA can always be met on existing maintenance contracts, with a recom-
mended risk of reaching a shortage in spares in the event that a new client site 
or contract is evaluated.

There are number of questions that have to be answered:

1.	According to a risk function, do we have enough spare to cover short SLA 
contracts? Are they at the right locations? If not, how much time will it 
take to get the right coverage?

2.	Do we have enough equipment in stock at the right locations to cover con-
tract requirements? If not, can we recommend actions (plan of asset move, 
invest in new asset) to meet the short SLA service assurance?

3.	Do we have stock in surplus, i.e. assets that are not used nor related to any 
potential contract?

4.	Knowing a demand profile, what is the most suitable asset decision that 
de-risks the service (i.e. minimises the volume of unmet demand or  
penalties)?

5.	What acceptable risk rate can we afford with a given stock and client sites 
scenario without investing? What is the best risk rate to apply for a given 
client, product or geographical area, knowing the reported faults, proac-
tive asset moves, and risk rate used in the past?

The high-level problem could be outlined as in Figure 3.4. The functional com-
ponent is notified by a number of inputs such as a change in the customer sites 
and warehouses –which could be represented by an address and a capacity of 
installed or stored parts, and a distribution network linking these sites according 
to some policy of transfer. Moreover, to be able to analyse the state of equipment 
and estimate their fault likelihood, a certain level of accuracy in the volume of 
spares (different status) in addition to a certain agility in updating the real-time 
data is expected. Another key input is the model for penalties and client priorities.

The output of a typical asset replenishment process would be a plan over a 
number of days recommending a set of transfers of assets from the warehouse 
to other locations closer to the client site, while minimising the overall cost 
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(storage, transfer, penalty fees) and assessing the asset products that are esti-
mated to be at risk (since there are installed occurrences not covered by a spare 
one), and some recommendations for investing in critical assets.

Replenishment Optimisation Problem

Desport et al. (2016; 2017; 2019) proposed a heuristic search-based model  
optimising the planning of asset volumes at each location of a list of sites, in 
closed-loop chains, taking into account a pre-known demand, unit costs for trans-
ferring part from one location to another one, and unit costs for storing the assets. 
This model addresses the pure asset move problem. Asset move planning covers 
only one part of the replenishment problem (the reusable one in a closed loop). 
However, to apply this approach to real-word, client-wise costs, service assurance 
risk estimates and some equivalence knowledge reasoning between reusable prod-
ucts are required. Introducing these features into the asset move planning problem 
allows us to assess the benefits of an augmented AI-based automated supply chain 
decision, which has traditionally been made by human and most frequently driven 
with a siloed view of each client’s product needs. We use AI to gain flexibility  
in decision-making and recommendation against uncertain and dynamic demand 
trends in assets (fault prediction and asset provisioning due to contract).

We propose a hybrid AI simulation approach with the aim of de-risking 
asset decisions for customer service. We model the problem as an extension of 
Desport et al. (2017):

1.	In addition to the demand profile, a minimum spare stock amount per 
client contract is defined according to a service assurance policy and an 
acceptable risk rule. The risk value is defined as a rule for a given product,  

Figure 3.4: Problem statement.
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and minimum stock level as a function of risk value, the spare for the prod-
uct in each warehouse, and the SLA of contract on the same product. For 
instance, a simple risk rule is: ‘1 spare is required for 10 installed parts at  
client site’, ‘2 spares for 11 to 20 installed parts’, etc. If two client sites are 
mapped to a city node (e.g. PARIS), one client having 32 CLK routers 
installed and another client 14 CLK routers installed, then the minimum 
stock of CLK product for node PARIS will be 1+ (46 modulo 10), i.e. five 
spare pieces of CLK product.

2.	The client’s priority is defined as a cost of penalty if a service is not covered 
as per the minimum stock constraint defined in (1); for any potentially 
missing spare, a risk is estimated, and a penalty cost defined.
1.	Cost incurred when a delay in service occurs: this penalty can be, for 

instance, a function of contractual fixed fees for each day of delay, and of  
a variable component function of the unit penalty per product and day 
of delay, and of the number of assets estimated at risk because not cov-
ered by a spare at nearest warehouse node. Both components can be 
weighted by a product-wise or customer-wise factor.

2.	Cost of healthy/faulty storage, function of (asset, node): each asset stored 
in a warehouse will incur a cost, which is configurable per product and 
warehouse node.

3.	Cost of not reaching the minimum stock for any tuple (node, product):  
a cost will be incurred on a daily basis if the latter is not satisfied.

4.	Cost of shipping a number of products during a transfer function of 
(origin, destination, asset): any valid move will incur a transfer cost 
(which could be zero, for instance when bringing an asset back to the 
main repair centre).

5.	Cost of repairing an asset or sending it to the manufacturer, function of 
(asset).

3.	Valued topology of distribution network: each warehouse (depot) and cus-
tomer site is abstracted as a node of an oriented network. Depots can be of 
various superficies and storage can cost vary depending on the region. In the  
problem model, tuning the storage cost allows us to iteratively identify  
the suitable policy of storage. For instance, if assets from the same product 
are installed on different clients based in different cities all in the same 
region, there is a choice between storing spares at the regional warehouse 
or distributing the spares in smaller volumes in each city local warehouse. 
The level of service assurance as well as the transfer cost influences this 
decision.

4.	Handling faulty parts: in a supply chain, faulty assets are transferred 
back to the repair centre either internally to provider, or directly to the 
manufacturer with the target that after a period of time a healthy asset 
can be reinjected into the chain (closed-loop supply chain). With the 
support of the IoT, we can imagine an automated approach that allows 
triggering the transfer back and the reinjection of a given product in a 
given warehouse.
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AI Approach to Solving the Problem

The problem can be modelled as a constrained optimisation problem (Hooker 
2012; Taleizadeh, Niaki & Aryanezhad 2010), where decision variables rep-
resent possible actions, a set of constraints allows business rules to be repre-
sented, and a list of costs items is to be minimised. Basing the solving algorithm 
on AI techniques known as meta-heuristics, an iterative process is considering 
suitable moves (partial valuing of the solution) and performing the best moves 
in the search space. For each valid move (satisfying the constraints), the impact 
on the costs is computed and then, depending on the meta-heuristic strategy 
chosen, the move will be accepted or rejected. Moves in this problem can be 
any of the following:

1.	bringing in new asset using available capital expenditure (CAPEX),
2.	moving assets between different storage warehouses, and
3.	repairing assets and reinjecting them into the network.

The strategy chosen in this use case is based on a heuristic search applying a 
best improvement neighbourhood selection: each feasible move represents the 
transfer of a volume of asset from one node to another node in the distribu-
tion network. Each transfer incurs a cost and an update of the volume at each 
impacted node. The transfer is validated by the heuristic search only if it leads 
to a cost improvement that reduces the overall penalty cost across all clients, 
while limiting the storage and transfer cost. Thus, the volume of transfer will 
be bundled (grouped) to avoid extra transfer cost. Further, the asset will not be 
moved if an equivalent product is already in place in sufficient volume. The lat-
ter approach requires the modelling of an equivalent model between products 
and its incorporation into the risk rule and minimum stock evaluation. With 
regard to constraints, a constraints network restricts the list of valid asset moves 
and actions considered by the algorithm; from the topology of the distribution 
network, a set of constraints defines valid transfers (oriented) between centres 
along with their duration, and status of assets (healthy or faulty) and type of 
product (heavy or not). This is important to reflect organisational policy (faulty 
parts are to reach a repair centre, for instance), as well as allowing sufficient 
agility in the adjustment of the topology without invalidating the replenish-
ment optimisation method.

Business Impact

The output of such optimisation and AI-driven tool includes:

1.	asset moves plan 1–7 days (all involved in a four-hour SLA) (plus esti-
mated reduction for financial risk as impact) to cover service assurance 
with existing spares in supply chain, as outlined in Figure 3.5;
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2.	 recommendation of equipment/contract at risk (not covered), as in Figure 3.6;
3.	recommendation of a site or warehouse nodes, contract, or asset where an 

action is needed such as purchase, resell or move;
4.	recommendation on stock not primarily used (could inform about the feasi-

bility of engaging a new contract within an existing mutualised pot of spares);
5.	 review of stock and client sites alignment through a geographical view (map), 

identifying shortage, risk and surplus before and after optimisation (Table 3.1).

Figure 3.5 outlines the qualitative and quantitative impacts that asset move 
automated planning and processing could provide. Impact can be observed at 
various levels:

1.	Healthy Stock: evolution of healthy stock throughout time horizon (nega-
tive value reflects non-met demand);

2.	Demand: number of assets requested on that particular day;
3.	Healthy In: number of healthy assets received on that day;
4.	Healthy Out: number of healthy assets lost (due to demand or external move);
5.	MinStock: minimum stock required for that asset on that day.

Figure 3.5 illustrates a plan over seven days from the perspective of a local 
warehouse in one large city. On day 2, the PARIS warehouse has received 18 
new DGN2200 assets and has a demand for three of those assets. On day 3, 
we can see that the demand was reduced from the stock, leaving 15 assets left. 
Starting day 2 with a stock of 20 spares, from day 6, as a result of two peaks of 
demand, the warehouse is missing 10 spares to serve the total demand over 
this week’s period. This example typically shows the kind of risky situation that 
could happen when replenishment and provisioning is not planned against a 
proper service demand profile.

Table 3.1: Example of service de-risking impact following asset move plan 
deployment.

ODE ID Product Min­
Stock

Stock of 
spares 
before

Stock of 
spares 
after

unmet  
4 hours SLA 
before  
optimisation

unmet  
4 hours SLA 
after  
optimisation

WH.RENNES CLK-7600 1 2 1 1 0

WH.STRASBG CLK-7600 1 0 1 −1 0

WH.PARIS CLK-7600 6 0 6 −6 0

WH.ORLEANS CLK-7600 1 0 1 −1 0

WH.LILLE CLK-7600 1 0 1 −1 0
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On the other hand, when asset move plan has been followed, as in the example 
of Table 3.1 below, the risk was initially highlighted for product CLK-7600 – the 
volume of uncovered installed asset before optimisation – which is represented 
by the value of ‘unmet 4 hours SLA before’. This value is negative, which means 
that some spares are missing and the risk of the installed asset is not entirely 
covered by the service. The risk is then reduced to the point of having no con-
tract at risk after the deployment of the optimised asset move plan: the value of 
‘unmet 4 hours SLA after optimisation’ is 0. The local warehouse RENNES was  
storing one extra spare compared to the minimum volume needed, which  
was moved to warehouse PARIS. The other spares were provisioned by the 
main parts centre (not visible in the table).

Figure 3.6 shows the overall report after optimisation. In the local warehouse 
PARIS, the asset move optimisation led to a full coverage of service assurance 
(MinStock) for WS-F6700-CFC, X2-10GB-LR, and attempted to reduce the risk 
for other products CLA-7600 and CISCO7604 but could not fulfil the SLA-
wise MinStock objective. In this case, the machine recommends investing in or  
re-evaluating the risk rule.

Analysing the impact for all the products installed and on spare in stock, the 
overall results show that, before optimisation, the status was:

1.	Volume of uncovered MinStock level: 201 spares assets were missing or 
misplaced.

After optimisation, the status on a real-world use case became:

1.	Reduction by 43% of the penalty cost.
2.	Volume of uncovered MinStock level: 121 spares required and still miss-

ing, so 60% reduction in the volume of misplaced items.

A map view as shown in Figure 3.7, displaying stock nodes (warehouses) and 
customer sites, allows the visualisation of nodes that have stock and are at risk 
for a specific asset. It can also be used to rapidly assess the positive impact of 
the asset optimisation process. In total, 106 contracts of 4-hour SLAs are pre-
sent and spread over 102 sites. This node is considered at risk with a deficit of  
10 items to reach an appropriate level of coverage for those contracts.

The impact of the generated asset moves plan is evaluated as a reduction 
of the cost potential caused by lack of spare parts and consequently mainte-
nance service failure. This reduction of cost can be derived from the outcome of 
asset move optimisation planning when the heuristic is guided by the risk rate 
associated to each asset product. This needs to be balanced against the cost of 
transferring assets (shipping, packaging) – to avoid moving too frequently and 
to facilitate a grouped transfer of assets.
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Conclusion

Optimising the deployment of assets and the replenishment of spares is key 
to the successful performance of service organisations. Central to this view-
point is the ability to model scenarios in dynamic environments. Changes 
in operations tend to impact the way organisational resources such as assets 
and spares are utilised to deliver services – a combinatorial and optimisation 
problem. AI techniques are known for their efficiency in finding good solu-
tions in polynomial time using heuristic search methods and their model-
ling capabilities to express constraints declaratively. In this chapter, we have 
presented AI-based approaches for asset management in a service chain. 
We have described two use cases along the two dimensions of maintain-
ing organisational resources – strategic and operational. We proposed a 
decision-making approach where AI-constraint propagation and heuristics 
search techniques are used to proactively recommend the levers for optimis-
ing the overall service assurance level and the performance of inventory-
dependent services. This enables asset and spare managers to optimise the 
deployment of mobile warehouses and the replenishment of spares with  
the objectives of:

1.	automating strategic coverage of inventory sites and operational asset deci-
sion allocation to warehouses while minimising CAPEX investments;

2.	having a list of potential locations for new warehouses and identify-
ing which places are the best located for them, according to a demand  
profile;

3.	recommending warehouse topology changes (removing, resizing) without 
damaging the asset maintenance service assurance of the organisation;

4.	optimising CAPEX while reducing penalties and maximising revenue;
5.	optimising minimum and maximum stocks per site/equipment/customer;
6.	assessing whether the existing stock in depots is sufficient to cover a given 

provisioning and fault demand for a given asset;
7.	providing the optimised asset move plan given a policy; and
8.	estimating what CAPEX investment is needed to meet demand in the 

event of no feasible plan being found.

Some of the key lessons learnt during the rollout of the capabilities included 
engaging end users to validate (1) key requirements, and (2) the outputs of 
the models. We used an agile approach coupled with rapid prototyping in this 
regard. This approach enabled us to deploy the capabilities right the first time. 
The capabilities have led to significant operational benefits and better service 
outcomes for our operational teams. The feedback from the business was excel-
lent, highlighting the flexibility that AI techniques have to offer in asset man-
agement in a service organisation.
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